• Forumu şuan da Ziyaretçi olarak görüntülüyorsunuz. Forum ziyaretçileri tüm konu ve bağlantıları görüntüleyemez ve kaynaklara erişimi yoktur. Eğer üye iseniz buradan üye girişi yapın ya da burayı tıklayarak şimdi üye olun.
  • Ubden® Topluluk Projelerine, Aracılığınızla Destek Vermektedir.

    Topluluk projelerine katkı yapmak ve topluğumuza ulaşan genç girişimcilere destek olmak için Buradaki  bağlantıdan işlem kanallarına ulaşabilirsiniz.

    Desteklerinizle 7.000 kişilik bir ekosistem olduk ve büyümeye devam ediyoruz. Desteğiniz için teşekkürler.

Haber Hardware in the Loop – Omniverse & Jetson

  • Konbuyu başlatan blog
  • Başlangıç tarihi
B

blog

Misafir
Misafir
lidar_selfdrivingcar_upscayl_4x_realesrgan-x4plus.webp

Donanım içeren simülasyon (HIL) testi, karmaşık sistemlerin performansını doğrulamak ve onaylamak için kullanılan güçlü bir araçtır. Bu sistemler robotik ve bilgisayarlı görüyü de içerir. Bu yazımızda
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
ile HIL testinin robotik ve bilgisayarlı görü alanlarında nasıl kullanıldığını anlatacağız.

NVIDIA Isaac platformu
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
ve
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
oluşur. NVIDIA Isaac Sim robotik algoritmalarını test etmek için ortam sağlayan bir simülatördür. NVIDIA Isaac ROS,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
için optimize edilmiş, makine öğrenimi, bilgisayarlı görü ve lokalizasyon algoritmaları içeren donanım hızlandırmalı bir yazılımdır.

NVIDIA Isaac platformu ile HIL testini kullanarak, robotik yazılımınızın performansını doğrulama ve optimize etme imkanı sunmaktadır. Böylece test sonuçları ile birlikte daha güvenilir ürünler elde edebilirsiniz. Bu yazıda, HIL sisteminin bölümleri ile birlikte, NVIDIA Isaac platformunun yazılımı ve donanımından da bahsedeceğiz. Ayrıca HIL testi için NVIDIA Isaac platformunu kullanmanın faydalarına göz atacağız ve bunu diğer test yöntemleriyle karşılaştıracağız.

NVIDIA Isaac Sim​


Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
bir platformu olan
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
, robotik ve bilgisayar görüş algoritmalarını test etmek için foto-gerçekçi, fiziksel olarak uygun bir sanal ortam sağlar. Simülasyon ortamı, fiziksel donanıma zarar verme riski olmadan performans için ince ayarları yapmanıza imkan sağlar. Simülasyon ortamı ayrıca oldukça özelleştirilebilir olduğundan bu da geniş bir yelpazede senaryoları ve kullanım durumlarını test etmek için ideal hale getirir.

NVIDIA Isaac Sim kullanarak daha akıllı ve gelişmiş robotlar oluşturabilirsiniz. Platform, robotların karmaşık görevleri gerçekleştirmesini sağlayan kompleks algoritmalar oluşturmanıza yardımcı olacak araçlar ve teknolojiler sunar. NVIDIA Isaac Sim,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
ve
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
kullanarak ortamları ve robot modellerini Evrensel Sahne Tanımı (USD) ortamlar ve robot modelleri ile kolayca işbirliği yapabilir, bunları paylaşabilir ve içe aktarabilir. Isaac ROS, Python desteği, robot ve ortam modellerini içe aktarma eklentileri, robotik simülasyonlara daha verimli ve etkili bir yaklaşım sağlar.

hil_1.png


NVIDIA Isaac Sim stack

NVIDIA Isaac Sim’i ROS/ROS2 veya Python ile kullanabilirsiniz. Isaac Sim ortamında Isaac Gym veya Isaac Cortexi kullanabilir, sentetik veri üretebilir veya dijital ikiz çalışmalarınızda kullanabilirsiniz. NVIDIA Isaac Sim, Omniverse ve Python 3.7 ile sorunsuz bir şekilde çalışması için roscpp ile özelleştirilmiş bir ROS Noetic sürümünü dahili olarak kullanır. Bu sürüm ROS Melodic ile uyumludur.

NVIDIA Isaac Sim şu anda ROS 2 köprüsü için ROS 2 Foxy ve Humble’ı desteklemektedir. ROS 2 için Ubuntu 20.04 kullanmanızı öneririz.

NVIDIA Isaac ROS​


Robot İşletim Sistemi (ROS) üzerine kurulu olan NVIDIA Isaac ROS, daha akıllı ve daha yetenekli robotlar oluşturmanıza yardımcı olacak bir dizi ileri özellik ve araç sunar. Özellikler arasında ileri düzeyde haritalama ve yer belirleme(lokalizasyon) yetenekleri, obje tespiti ve obje takibi(tracking) bulunur. En son özellikler hakkında daha fazla bilgi için,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
e bakın.

Isaac ROS ile kompleks robotik uygulamaları hassasiyet ve doğrulukla oluşturabilirsiniz. Güçlü bilgisayarlı görü ve yerelleştirme algoritmalarıyla Isaac ROS, gelişmiş robotik uygulamaları oluşturmak isteyen tüm geliştiriciler için değerli bir araçtır.

hil_2.png


Isaac ROS ve Yazılım Katmanları

Isaac GEMs, robotik topluluğu için piyasaya sürülen ve NVIDIA Jetson platformunun bir parçası olan
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
hızlandırmalı ROS 2 paketlerinden oluşan bir settir. Isaac ROS, algılama ve yapay zeka için bir dizi paketin yanı sıra ROS için NVIDIA Isaac Transport (NITROS) olarak bilinen eksiksiz pipeline sunar. Paketler,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
ve Jetson platformu için görüntü işleme ve bilgisayar görüşü işlevleri için optimize edilmiştir.

Bu yazıda, aşağıdaki paketler için HIL çalıştırma örneklerinden bahsedeceğiz:

– NVIDIA Isaac ROS VSLAM
– NVIDIA Isaac ROS Apriltag
– NVIDIA Isaac ROS Nvblox
– NVIDIA Isaac ROS Proximity Segmentation

Donanım Özellikleri ve Kurulum​


Bu test için bir iş istasyonu veya dizüstü bilgisayarınız ve bir NVIDIA Jetson gereklidir:

– Ubuntu 20.04 yüklü bir x86/64 makine
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.

– Ekran
– Klavye ve fare
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
veya
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.

– NVIDIA JetPack 5+ (5.1.1 test edildi)
– Router
– Ethernet kablolari

hil_3.png


Donanım Kurulumu

NVIDIA Jetson modülü ve bilgisayar gibi cihazlar arasında büyük miktarda veri aktarırken Wi-Fi yerine kablolu Ethernet bağlantısı kullanmak genellikle tercih edilir. Bunun nedeni, Ethernet bağlantılarının daha hızlı ve daha güvenilir veri aktarım hızları sunmasıdır; bu da özellikle gerçek zamanlı veri işleme ve makine öğrenimi görevleri için önemli olabilir. Jetson modülü ile bilgisayarınız arasında bir Ethernet bağlantısı kurmak için aşağıdaki adımları izleyin:

Jetson modülü ve bilgisayarınız arasında bir Ethernet bağlantısı kurmak için şu adımları izleyin:

– Boş Ethernet portlarına sahip bir Ethernet kablosu ve bir router alın.
– Kablonun bir ucunu cihazın Ethernet portuna takın.
– Kablonun diğer ucunu router’ın herhangi bir boş Ethernet portuna takın.
– Cihazı açın ve tamamen başlamasını bekleyin.
– Ethernet bağlantısının çalıştığını, Ethernet simgesine bakarak veya ifconfig veya ipconfig gibi bir ağ teşhis aracı kullanarak kontrol edin.
– PC’niz ve NVIDIA Jetson hazır ve bağlandığında,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
GitHub reposundaki kurulum talimatlarını izleyin.

Demo’yu Çalıştırma​


İlk adımda, iş istasyonunuzda NVIDIA Isaac Sim’i çalıştırın. ‘./isaac_ros.sh’ scripti, Carter robotu ile bir demo çalıştırır.

Carter 1.0, Segway’den diferansiyel taban, 3D taramaları için bir Velodyne P16, ZED kamera, IMU ve Jetson modülünden oluşan robotik bir platformdur. Özel montaj parçaları ile birlikte, bu NVIDIA Isaac navigasyon yığını için güçlü ve sağlam bir deneme platformu oluşturur. Simülasyon başladığında, NVIDIA Isaac Sim’den stereo kamera görüntülerini görürsünüz. Robot, iki kamera kullanarak NVIDIA Jetson modülünüzde çalışan Isaac ROS’tan gelen girdileri almaya hazırdır.

hil_4.png


Carter’ın NVIDIA Isaac Sim’deki kamera görüntüleri

Denenecek Isaac ROS paketleri​


Bu yazıda, AMR robotik veya tekerlekli robotunuzla kullanmak için lokalizasyon, haritalama ve AprilTag algılama paketlerine odaklanıyoruz ancak gerektiğinde diğer paketleri test etmek için repoyu değiştirebilirsiniz.

Isaac ROS Visual SLAM​


NVIDIA Isaac ROS Visual SLAM, görsel odometri ile eşzamanlı konum belirleme ve haritalamanın (SLAM) bir kombinasyonunu kullanır. Görsel odometri, bir kameranın başlangıç konumuna göre konumunu tahmin etmek için kullanılan bir tekniktir. Bu teknik, anahtar nokta setlerini tanımlamak için iki ardışık giriş karesini veya stereo çiftini analiz eden yinelemeli süreçleri içerir. Bu iki setteki kilit noktaları eşleştirerek kameranın kareler arasındaki geçişini ve göreli dönüşünü belirleyebilirsiniz.

SLAM, daha önce edinilmiş bir yörünge bilgisini dahil ederek görsel SLAM’ın doğruluğunu artıran bir yaklaşımdır. Mevcut bir sahnenin daha önce görülüp görülmediğini tespit ederek (kamera hareketindeki bir döngü), önceden tahmin edilen kamera pozlarını optimize edebilir.

hil_5.png


Isaac ROS VSLAM ve nvblox

hil_6.png


Isaac ROS VSLAM ve nvblox çalışırkenki kaynak kullanımı

Isaac ROS NVblox​


NVblox paketi, sensörleri kullanarak gerçek zamanlı olarak bir robotun çevresindeki ortamın 3D modelini oluşturmaya yardımcı olur. Bu model, robotların oluşturlan ilerleme istikametlerinde herhangi bir engel çarpmadan ilerlemesi için kullanılır. Paket, gerçek zamanlı performans için NVIDIA CUDA teknolojisini kullanır. Bu repo, nvblox kütüphanesi için ROS 2 entegrasyonunu içerir.

hil_7.png


Isaac ROS NVblox Akışı
hil_8.png


Isaac ROS VSLAM Çıktısı

Isaac ROS vslam paketi,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
talimatlarını izlediyseniz demo’nuzda her zaman çalışır.

NVIDIA Isaac ROS Apriltag​


ROS 2 apriltag paketi, bir görüntüdeki algılamayı hızlandırmak, poz, kimlik ve diğer meta verileri yayınlamak için NVIDIA GPU kullanır. Bu paket, CPU AprilTag algılaması için ROS 2 düğümü ile karşılaştırılabilir.

Bu etiketler, bir robotun bir eylemi başlatması veya bir işi belirli bir noktada tamamlaması için yönlendiren referanslardır. Ayrıca artırılmış gerçeklikte görüntü odometrisini kalibre etmek için de kullanılırlar. Bu etiketler birçok sistemde mevcuttur.

hil_9.png


QR Kodlarıyla AprilTags Örnekleri

hil_10.png


Isaac ROS Apriltag Tespit Demosu

Isaac ROS Yakınlık Segmentasyonu​


‘Isaac_ros_bi3d’ paketi, ikili sınıflandırma yoluyla stereo derinlik tahmini yapmak için optimize edilmiş bir Bi3D modeli kullanır. Bu işlem, belirli bir aralıkta bir engelin mevcut olup olmadığını belirlemede yararlı olan ve çevrede gezinirken çarpışmaları önlemeye yardımcı olan yakınlık segmentasyonu için kullanılır.

hil_11.png


Isaac ROS Yakınlık Segmentasyonu

Carter’ı rviz’den Kullanın​


Rviz hazır olduğunda ve her şey çalıştığında, rviz alttaki çıktıyı gösterir. Yukarıdaki görsel, Carter’ın haritanın merkezinde olduğunu ve bloklar üzerinde olduğunu gösterir. Aşağıdaki videoda, rviz’i kullanarak robotunuzu tüm ortamlarda sürüp Nvblox’tan oluşturulan haritayı görebilirsiniz.

hil_13.png


rviz üzerinden Isaac ROS VSLAM ve Isaac ROS Nvblox ile haritalama

Aşağıdaki videoda, rviz’i kullanarak robotunuzu tüm ortamlarda sürüp Nvblox’tan oluşturulan haritayı görebilirsiniz.

For privacy reasons YouTube needs your permission to be loaded.
I Accept

Isaac ROS Yakınlık Segmentasyonu

Simülasyonu test etmek için Foxglove’ı da kullanabilirsiniz.

hil_12.png


Foxglove ile Simülasyon Testleri

Özet​


Bu yazıda, NVIDIA Jetson Isaac ROS modülünüzle simülasyon ortamında donanımın nasıl kurulacağını ve test edileceğini ve NVIDIA Isaac Sim’in nasıl deneyeceğinizi gösterdik. İş istasyonunuz ve Jetson modülünüz arasında kablolu bir bağlantı kullanmayı unutmayın. Tüm akan ham verileri göstermek için güvenilir bir bağlantıya ihtiyacınız vardır.

Ayrıca ‘/isaac-ros_dev’ klasörüne yeni eklenen diğer NVIDIA Isaac ROS paketlerini test etmekten de çekinmeyin. Daha fazla bilgi için,
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
readme.md dosyasına bakın.

Yazının kaynağına
Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
ulaşabilirsiniz.


Bu bağlantıyı görüntüleyebilmek için kayıt olmalı zaten üyeyseniz üye girişi yapmalısınız.
 
Üst